204 research outputs found

    Multidisciplinary approach to diagnosis and management of osteosarcoma – a review of the St Vincent's Hospital experience

    Get PDF
    BACKGROUND: Osteosarcoma is the most common primary malignant bone tumour in children and young adults. Despite advances in the diagnosis and management of osteosarcoma, there have been few recent studies describing the experiences of tertiary referral centres. This paper aims to describe and discuss the clinical features, pre-operative work-up, management and outcomes of these patients at St Vincent's Hospital (Melbourne, Australia). METHODS: Retrospective study of fifty-nine consecutive patients managed for osteosarcoma at St Vincent's Hospital between 1995 and 2005. RESULTS: Median age at diagnosis was 21 (range, 11–84) years. Gender distribution was similar, with thirty-one male and twenty-eight female patients. Twenty-five patients had osteosarcoma in the femur, eleven each were located in the humerus and tibia, six were identified in the pelvis, and one each in the clavicle, maxilla, fibula, sacrum, ulna and radius. Pre-operative tissue diagnosis of osteosarcoma was obtained through computed tomography-guided percutaneous biopsy in over ninety percent of patients. Following initial therapy, over fifty percent of patients remained relapse-free during the follow-up period, with twelve percent and twenty-seven percent of patients documented as having local and distant disease recurrence, respectively. Of patients with recurrent disease, sixty-two percent remained disease-free following subsequent surgical intervention (most commonly, pulmonary metastatectomy). CONCLUSION: Patient outcomes can be optimised through a multidisciplinary approach in a tertiary referral centre. At St Vincent's Hospital, survival and relapse rates of patients managed for osteosarcoma compare favourably with the published literature

    A cantilever approach to estimate bending stiffness of buildings affected by tunnelling

    Get PDF
    The evaluation of the effect of tunnel construction on buildings is a problem being faced by engineers around the world. Building bending stiffness is an important parameter in tunnel-soil-structure interaction analyses. The construction of a new tunnel influences an existing building via induced ground movements, and the existence of a building also affects ground displacements due to tunnelling via its stiffness and weight. The magnitude of the effect depends on the properties of the building and foundation as well as the complex soil-structure interactions that occur. In this paper, an approach is proposed in which the building response to tunnelling is related to the bending of a cantilever beam and empirical-type relationships are developed to predict building bending stiffness. This approach is relevant to cases where the building is perpendicular to the tunnel axis and its nearest edge does not overlap more than half of the tunnel cross-section. Rigorous finite element analyses are used to evaluate the response of buildings to ground displacements and expressions are provided which relate three-dimensional building bending stiffness to a simple beam theory expression. The results show that lower storeys have a proportionally higher stiffness effect than higher storeys. In addition, the parameters that affect the global behaviour of the building, such as component stiffness and geometry, are studied. The suggested approach provides a relatively quick and easy way of accurately evaluating building bending stiffness for use within tunnel-soil structure interaction analyses

    Unusual manifestation of Erdheim-Chester disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Erdheim-Chester disease (ECD) is a rare multisystem non-Langerhans cell histiocytosis that is characterized histologically by xanthogranulomatous infiltrates and radiologically by symmetrical sclerosis of long bones. The xanthomatous process is characterized by prominent foamy histiocytes staining positive for CD68, occasionally for PS100 and negative for S100 and CD1a. Gastroenterological involvement is exceedingly rare.</p> <p>Case Presentation</p> <p>This case report describes the case of a 69-year-old man who presented otherwise well to the gastroenterology department with unspecific abdominal symptoms, nausea, vomiting and weight loss. ECD involving the gastrointestinal tract was confirmed clinically, radiologically and histologically.</p> <p>Conclusion</p> <p>Gastroenterological manifestation of ECD is rare but should be considered in the differential diagnosis in patients presenting with evidence of multi-organ disease and typical radiological features of Erdheim-Chester disease elsewhere.</p

    The Role of Additive Neurogenesis and Synaptic Plasticity in a Hippocampal Memory Model with Grid-Cell Like Input

    Get PDF
    Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus layer
    corecore